

Megôhmetro 5kV/1kV LHF

Manual do usuário

Versão 1.5

Sumário

Sumário	2
Avisos de segurança	3
Introdução Geral	3
Descrição Mecânica	4
Teste de Resistência de Isolação	5
Conceito teórico	5
Conexões básicas	6
Máquinas elétricas	7
Cabos	7
Procedimento de Realização do Teste	8
Conexão dos cabos	8
Executar o teste	8
Baterias	15
Especificações	17
Especificações Elétricas	
Especificações do Hardware	
	19

Avisos de segurança

- Equipamento elétrico de Alta Tensão!
- Deve ser utilizado por pessoal treinado e capacitado;
- Utilizar sempre os EPI's necessários para essa atividade, sapato de segurança com solado de borracha OBRIGATÓRIO;
- Cuidado no manuseio, suscetível a choques elétricos;
- Os testes devem ser executados com o equipamento desconectado da rede elétrica;
- Os testes devem ser executados com a USB desconectada;
- Durante os testes mantenha-se afastado do objeto em teste;
- Não entre em contato com o objeto testado até o mesmo ser descarregado;

Introdução Geral

O Megôhmetro LHF é um instrumento portátil à bateria para medição de resistência de isolação de até $5T\Omega$. O instrumento possui as seguintes características.

- Medição de resistência de isolação de até 5TΩ;
- Teste em tensão constante;
 - Tensão de teste programável de 250V a 5kV ou 1kV a depender do modelo, em intervalos de 50V;
 - Temporizador de teste programável de 1:00 a 30:00 min em intervalos de 1:00 min;
- Interrupção do teste caso corrente de fuga exceda a corrente de curto do equipamento;
- Descarga automática do objeto após conclusão do teste;
- Tela de resultados após conclusão do teste;
 - o Índice de Absorção Dielétrica (DAR) resultado da razão de R(60s) por R(30s);
 - Índice de Polarização (PI) resultado da razão de R(600s) por R(60s);
 - Resistência de isolação obtida em 15s, 30s, 60s, 600s e final;
 - o Gráfico de tensão aplicada e resistência medida por tempo de teste;
- Correção do valor de resistência medida para 40°C (Para isolação do tipo Termofixo).
- Memória para armazenamento de até 100 testes.

Descrição Mecânica

O equipamento é instalado em uma maleta portátil (IP54) que permite fácil mobilidade para sua atuação em campo. A Fig. 1 apresenta as funcionalidades do painel frontal.

Figura 1 – Funcionalidades do painel frontal.

- 1. Conector para recarga das baterias;
- 2. Display touch 2,8";
- 3. Porta USB para exportação de dados salvos na memória;
- 4. Chave para ligar/desligar o equipamento;
- 5. Knob para ajuste numérico dos parâmetros de teste;
- 6. Botão para iniciar teste;
- 7. Botão para encerrar teste;
- 8. Terminal Guard;
- 9. Terminal de retorno da medição de isolação;
- 10. Terminal de alta tensão.

Teste de Resistência de Isolação

Esta seção dedica-se a explicar ao usuário o princípio físico que ocorre durante o teste de resistência de isolação.

Conceito teórico

A resistência de isolação de um enrolamento de uma máquina elétrica é uma função do tipo e condição dos materiais isolantes utilizados, umidade, temperatura, cargas residuais no material, duração do teste, magnitude de tensão aplicada, bem como das técnicas utilizadas para aplicálos. Em geral, a resistência de isolação varia proporcionalmente com a espessura do isolamento e inversamente proporcional a área da superfície do condutor.

A corrente resultante da tensão contínua aplicada no material é composta pela corrente que flui pela superfície do material mais a corrente que flui pelo volume interno do isolamento. A corrente proveniente do volume do material pode ser subdividida em três componentes: capacitiva (I_C), de absorção (I_A) e de Condução (I_G).

Corrente Capacitiva (I_C): Possui uma magnitude alta e de rápida duração. Seu valor decai exponencialmente em função da capacitância geométrica entre os pontos de medição do material e da resistência interna do equipamento que está realizando o teste. Por sua rápida duração, esta corrente não possui influência no resultado de resistência do material para testes de duração igual ou superior a um minuto.

Corrente de Absorção (I_A): Também chamada de corrente de absorção de polarização, possui um decaimento mais lento quando comparado a corrente capacitiva. Conforme a polarização do material aumenta, esta diminui. É resultante da polarização de moléculas e deriva de elétrons. O tempo de dispersão da corrente de absorção está diretamente relacionado com a umidade e contaminantes presentes na isolação. Geralmente a resistência medida nos primeiros minutos de teste possui grande influência da corrente de absorção.

Corrente de Condução (I_G): É uma componente constante que expressa a real resistência de isolação do material após as correntes capacitivas e de absorção serem insignificantes. A corrente de condução é resultante da soma da corrente que flui pelo volume do isolante e da corrente que percorre a superfície do material.

A corrente medida pelo equipamento é denominada Corrente Total (I_T), resultante da soma de todas as correntes anteriormente descritas. Na Fig. 2 é apresentado o comportamento teórico de cada corrente mencionada.

Figura 2 – Correntes do teste.

Conexões básicas

Para a adequada segurança e realização do teste de isolação é necessário que o <u>equipamento</u> <u>não esteja conectado na rede elétrica</u> e que o objeto a ser testado se encontre <u>totalmente</u> <u>desenergizado e desconectado da rede elétrica.</u>

Máquinas elétricas

O teste indicado para máquinas elétricas envolve a medição de isolação de todas as fases contra a carcaça. A Fig. 3 demonstra este exemplo de aplicação em um motor elétrico trifásico. Neste teste todas as fases são desconectadas da rede elétrica e são curto-circuitadas. A garra **+HV** é então conectada nas fases. A garra **-HV** é conectada na carcaça do motor.

Figura 3 – Ligação para medição de máquinas elétricas.

Cabos

Para a medição de isolação de cabos a Fig. 4 demonstra um exemplo de aplicação para cabos blindados. Com as duas pontas do cabo decapadas da forma como é demonstrada abaixo, a garra **+HV** deve ser conectada na malha de blindagem. A garra **-HV** deve ser conectada no condutor central do cabo. Por fim, a garra **G** deve ser conectada na superfície do isolante entre a blindagem e o condutor central. O propósito da utilização do Guard é impedir que correntes que fluam pela superfície do isolante interno retornem por **-HV**. Estas correntes de superfície geram um desvio do valor de resistência real do volume interno do isolante.

Figura 4 – Ligação para medição de cabos blindados.

Procedimento de Realização do Teste

Para a adequada segurança e realização do teste de isolação é necessário que o <u>equipamento</u> <u>não esteja conectado na rede elétrica</u> e que o objeto a ser testado se encontre <u>totalmente</u> <u>desenergizado e desconectado da rede elétrica</u>.

Conexão dos cabos

Para este exemplo de aplicação o teste será realizado em um motor elétrico trifásico. A Fig. 3 demonstra um exemplo de ligação para a medição de resistência de isolação entre todas as fases contra a carcaça da máquina elétrica. Neste teste todas as fases são desconectadas da rede elétrica e são curto-circuitadas. A garra **+HV** é então conectada nas três fases. A garra **-HV** é conectada na carcaça do motor.

Executar o teste

Passo 1: Ligue o equipamento através da chave "Habilita" localizada na posição "4" da Fig. 1. Após ligar o equipamento o display deverá apresentar a seguinte tela.

Figura 5 – Tela inicial.

A partir desta tela é possível seguir para o menu de teste e o menu de configurações. O menu de configurações é responsável pelo procedimento de calibração do equipamento. Para a realização do teste selecione o botão "Teste".

Passo 2: Após selecionar o botão de "Teste" a seguinte tela presente na Fig. 6 será apresentada. Para o ensaio em tensão constante é necessário determinar dois parâmetros: A tensão aplicada, definida no campo "Tensão Final", e a duração do teste, definida em "Tempo de Teste".

Figura 6 – Tela de configuração do teste em tensão constante.

Passo 3: Os campos disponíveis para edição estão destacados na cor amarela. Uma vez que selecionado o campo ele deverá mudar sua cor para verde, habilitando seu modo de edição. A mudança no valor é feita através do knob presente no painel frontal do equipamento, i dentificado como "5" na Fig. 1. Para confirmar a edição ou selecionar outro campo é necessário selecionar novamente o mesmo campo, desativando seu modo de edição, alterando sua cor para o amarelo. O exemplo abaixo demonstra a edição campo do valor de tensão final de 250V (valor padrão) para 1000V (valor desejado).

500		
500		
500 - 1000		
1000 – 2500		
2500 - 5000		
5000 - 10000		
*Tensão nominal de linha máquinas trifásicas, tensão nominal de fase em máquinas monofásicas e tensão nominal de máquinas CC ou enrolamentos de campo.		
, , ,		

Tabela 1: Tensão recomendada para teste de acordo com IEEE Std 43-2013

O botão "Limpa" na parte inferior esquerda da tela reseta as edições realizadas para os valores padrão, caso necessário. Aperte o botão "Prox." para dar continuidade.

Passo 4: Nesta tela são apresentados os resultados extras disponíveis. DAR e PI podem ser calculados para o teste constante. Estes índices são calculados de acordo com as equações descritas abaixo.

$$DAR = \frac{R(60s)}{R(30s)} \tag{1}$$

$$PI = \frac{R(600s)}{R(60s)} \tag{2}$$

Figura 7 – Tela de resultados extras.

Para obter o resultado de interesse basta marcar o checkbox ao lado do índice. Caso seja selecionado PI, é necessário que o tempo de teste seja de no mínimo 10 min.

O botão "Limpa" desabilita os resultados selecionados, caso necessário. Ao apertar o botão "Iniciar" ou o botão verde no painel frontal identificado como "6" na Fig. 1 a medição de resistência de isolação será iniciada.

<u>Atenção! Após este passo a tensão previamente selecionada será habilitada no terminal</u> <u>de saída do equipamento e o objeto testado será energizado.</u>

Passo 5: Nesta etapa é realizada a medição de isolação do objeto testado. É possível encerrar o teste através do botão "Parar" ou no botão vermelho do painel frontal identificado como "7" na Fig. 1.

Acompanhando a Fig. 8, a tensão aplicada e corrente de fuga medidas são apresentadas à direita do valor de resistência de isolação. O progresso do teste pode ser acompanhado através do temporizador abaixo do valor de resistência. Na parte inferior da tela é apresentada uma barra de escala logarítmica referente a resistência medida. O status do progresso da medição pode ser acompanhado na parte superior ao lado esquerdo do indicador de bateria.

A primeira etapa do teste consiste em minimizar os erros de medição através da compensação de offsets no circuito interno do equipamento. Este procedimento é identificado pela mensagem "Status: Compensando Offset", seguida da etapa de seleção da escala utilizada para a medição, identificada pela mensagem "Status: Selecionando escala". Logo após é iniciada a medição de isolação identificada pela mensagem "Status: Realizando medição de isolação" presente na Fig. 8.

A mensagem "Resistência máxima excedida" indica que a corrente de fuga medida é inferior ao limite mínimo de leitura de corrente do equipamento (1 nA).

<i>lhf</i>	←	Stat mec	us: Re lição c	alizano le isola	do Ição	
1.()	G۵	Ω	<u></u>	100 1.0	0. V) uA
Tempo	10	:00			Pa	rar
ΜΩ 1	10	100	GΩ 1	10 '	100	ΤΩ 1 Ι

Figura 8 – Tela de medição.

Além do acionamento do botão "Parar" existem mais duas condições em que o teste é interrompido. São estas:

- 1. Quando for identificada uma tensão residual superior a 20V no objeto a ser testado antes da medição;
- 2. Quando a corrente de curto-circuito do equipamento é excedida durante o teste.

Após a finalização ou interrupção do teste é ativado o sistema de descarga das capacitâncias do objeto. A tensão de descarga é demonstrada no campo de tensão aplicada. É possível prosseguir apenas após esta tensão possuir um valor inferior a 20V.

Passo 6: Após a conclusão da descarga é apresentada a tela presente na Fig. 9. Os dados demonstrados são referentes aos últimos valores de tensão e corrente medidos, resistência calculada e tempo total do teste. Na parte inferior a mensagem identifica o motivo da finalização do teste. Aperte "Prox." para prosseguir.

Figura 9 – Tela pós-teste.

Passo 7: Nesta tela são apresentados os resultados completos da medição. A tela pode ser observada na Fig. 10.

lĥf ←			
10.0 (GΩ	1000.0 100.0 10:00	∨ nA min
Gráfico	T = <u>30</u>	°C Ca	alc.
DAR= 2.00	R(15s) =	1.0	GΩ
PI = 2.00	R(30s) =	2.5	GΩ
	R(60s) =	5.0	GΩ
	R(600s) =	10.0	GΩ
	R(to) =	10.0	GΩ

Figura 10 – Tela dos resultados.

Na parte superior estão os últimos valores de tensão, corrente e resistência registrados junto do tempo total do teste. Abaixo estão os valores de resistência obtidos em 15s, 30s, 60s, 600s e Final. O botão "Calc." localizado na região central a direita realiza o cálculo de correção de temperatura (40°C) dos valores de resistência abaixo. A temperatura do objeto deve ser ajustada no campo em amarelo. Seu método de ajuste é o mesmo do passo 3. As equações utilizadas para esta correção são demonstradas a seguir, retiradas da norma IEEE Std 43-2013.

$$R_{c} = \begin{cases} R_{T} \cdot e^{-4230 \cdot \left(\frac{1}{T+273} - \frac{1}{313}\right)}, & 40^{\circ}C < T \le 85^{\circ}C \\ R_{T} \cdot e^{-1245 \cdot \left(\frac{1}{T+273} - \frac{1}{313}\right)}, & 10^{\circ} \le T \le 40^{\circ}C \end{cases}$$
(3)

Onde R_c é a resistência corrigida para 40°C, R_T é a resistência medida e T é a temperatura do isolante durante o teste.

Para executar um novo teste basta pressionar a seta no canto superior esquerdo para retornar a tela inicial. Para visualizar o gráfico de resistência medida e tensão aplicada versus tempo ou salvar o teste na memória basta selecionar o botão "Gráfico" presente na parte central da tela e prosseguir para o passo 8.

Passo 8 (Opcional): Nesta tela é apresentado o gráfico de resistência medida (curva amarela) e tensão aplicada (curva azul) versus tempo de teste.

O eixo vertical esquerdo representa a magnitude de resistência em uma escala logarítmica de 1 M Ω à 1 T Ω . O eixo vertical direito apresenta a variação da tensão aplicada durante o teste em escala linear. O tempo é apresentado no eixo horizontal em escala linear. A Fig. 8 apresenta um exemplo de uma medição realizada.

Figura 11 – Gráfico do teste.

Para retornar para a tela anterior pressione o botão "Voltar". Para executar um novo teste basta pressionar a seta no canto superior esquerdo para retornar a tela inicial. Para salvar os dados do teste aperte em "Salvar".

Passo 9 (Opcional): Após teclar em "Salvar" a seguinte tela será apresentada.

Iĥf ←	
Cadastre a	ID do item:
Memória diponível:	100%
Voltar	Salvar

Figura 12 – Salvar dados.

Nesta etapa é necessário criar um código de até 9 dígitos para identificação do teste. Este código é denominado "ID". A ID do teste serve como cabeçalho para sua identificação. Cada ID é única na memória do equipamento, não sendo possível salvar dois testes com a mesma. Com a ID preenchida basta apertar em "Salvar" para gravar os resultados na memória.

Caso a ID preenchida já exista na memória o seguinte aviso será apresentado. Caso o botão "Sim" seja pressionado, o teste já existente na memória com esta ID será sobrescrito pelo atual.

lĥf ←	Sobrescre Sim	ever teste? <mark>Não</mark>	
Cada	stre a ID	do item:	
-	1234567	789	
Memória diponível: 99% ID existente			
Voltar		Salva	r

Figura 13 – ID existente.

Caso não haja espaço na memória a seguinte mensagem será apresentada.

lĥf ←			
Cada	stre a ID do	item:	
	101		
Memória diponível: 0% Armazenamento cheio			
Voltar		Salvar	

Figura 14 – Memória cheia.

Neste caso a única maneira de salvar o teste atual é utilizando uma ID já existente para sobrescrever algum teste na memória, porém o teste sobrescrito será perdido. O procedimento para exportar os dados e limpar a memória do equipamento está presente no documento "Manual do Usuário - Relatório".

Para retornar para a tela anterior pressione o botão "Voltar". Para executar um novo teste basta pressionar a seta no canto superior esquerdo para retornar a tela inicial.

Baterias

O equipamento comporta três baterias de Li-ion NCR18650B de 3400mA cada. Em todas as telas no canto superior direito é possível observar a carga restante do equipamento. Cada cor representa uma faixa de carga como é demonstrado abaixo.

Para realizar a recarga é necessário desconectar os cabos de saída (+HV, -HV e G) e conectar o equipamento na rede elétrica (100-240V) através do conector identificado como 1 na Fig. 1. Logo após a conclusão deste procedimento a seguinte tela deverá ser apresentada.

Nesta tela é possível acompanhar o progresso da recarga através da barra de 0 a 100% na parte central inferior e na porcentagem no canto superior direito. A tensão atual das três baterias é demonstrada pelo campo "Tensão da bateria". O equipamento pode ser desligado pela chave "Habilita" durante a recarga.

Após a conclusão da recarga o cabo de alimentação da rede elétrica deve ser desconectado e o equipamento deve ser desligado por 5 segundos. Passados os 5 segundos o instrumento já está disponível para ser utilizado novamente.

Especificações

Especificações Elétricas

	Range	Precisão
Tensão aplicada	$250 V \le V \le 5000 V$	5%
Corrente de fuga	$1 nA \le I \le 300 uA$	5%

Temporizador	Range	Resolução
	1 a 30 minutos	1 segundo

Tensão de teste	Range de medição	Precisão
250 1/	$R < 2,5 \ G\Omega$	5%
250 V	$2,5 \ G\Omega \leq R \leq 25 \ G\Omega$	20%
	$R > 25 \ G\Omega$	Não especificado
FOOK	$R < 5 \ G\Omega$	5%
500 /	$5 \ G\Omega \le R \le 50 \ G\Omega$	20%
	$R > 50 \ G\Omega$	Não especificado
1000 1/	$R < 10 \ G\Omega$	5%
1000 V	$10 \ G\Omega \leq R \leq 100 \ G\Omega$	20%
	$R > 100 \ G\Omega$	Não especificado
2000 1/	$R < 20 \ G\Omega$	5%
2000 V	$20 \ G\Omega \le R \le 200 \ G\Omega$	20%
	$R > 200 \ G\Omega$	Não especificado
2000 1/	$R < 30 \ G\Omega$	5%
3000 /	$30 \ G\Omega \le R \le 300 \ G\Omega$	20%
	$R > 300 \ G\Omega$	Não especificado
4000 1/	$R < 40 \ G\Omega$	5%
4000 V	$40 \ G\Omega \leq R \leq 400 \ G\Omega$	20%
	$R > 400 \ G\Omega$	Não especificado
F000 V	$R < 50 \ G\Omega$	5%
5000 /	$50 \ G\Omega \le R \le 500 \ G\Omega$	20%
	$R > 500 \ G\Omega$	Não especificado

Especificações do Hardware

Display	Display TFT touch resistivo 2,8"
Alimentação	3 baterias recarregáveis Li-ion NCR18650B 3,7V
Entrada para recarga (CA)	100-240V CA 50/60Hz 25VA
Maleta	IP54
Dimensões (C x L x A)	339mm x 295mm x 152mm

Informações do Fabricante

© LHF Sistemas de teste e medição LTDA Rua Christina Enriconi Marcatto, 100 • Jaraguá Esquerdo Jaraguá do Sul, SC • 89253-423 Fone: (47) 3370-2441 • E-mail: <u>contato@lhf.ind.br</u>